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Review
Invasive fungal infections (IFIs) are a major cause of HIV-
related mortality globally. Despite widespread rollout of
combined antiretroviral therapy, there are still up to 1
million deaths annually from IFIs, accounting for 50% of
all AIDS-related death. A historic failure to focus efforts
on the IFIs that kill so many HIV patients has led to
fundamental flaws in the management of advanced HIV
infection. This review, based on the EMBO AIDS-Related
Mycoses Workshop in Cape Town in July 2013, sum-
marizes the current state of the-art in AIDS-related
mycoses, and the key action points required to improve
outcomes from these devastating infections.

Fungal infections and HIV/AIDS
Invasive fungal infections (IFIs) have rapidly emerged as a
global threat to health owing to an increasing population
of immunocompromised individuals and our dynamic
interface with natural ecosystems [1]. The global HIV
pandemic is now a major driver for mortality from fungal
diseases worldwide [2]. Although combined antiretroviral
therapy (cART) has dramatically changed the face of
the HIV epidemic, many patients still present to clinical
services with advanced HIV-related immunosuppression,
particularly in developing countries. A failure to ade-
quately address the IFIs that affect such patients has
become a primary driver for AIDS-related death world-
wide (Table 1). In July 2013, leading researchers from
around the world working at the interface of HIV and IFIs
met at the EMBO AIDS-Related Mycoses Conference in
Cape Town, South Africa, to address these issues. In this
review we summarise the major topics discussed: the
epidemiological interaction between HIV and fungal infec-
tions; the immunopathogenesis and clinical aspects of
fungal infection in the context of HIV/AIDS; and key
knowledge gaps that need to be addressed to reduce the
unacceptably high mortality. A formal position statement
produced at the conference also accompanies this
article [3].
0966-842X/$ – see front matter

� 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tim.2014.01.001

Corresponding author: Armstrong-James, D. (d.armstrong@imperial.ac.uk).
Keywords: HIV; fungal infection; immunity; AIDS; mycoses.

120 Trends in Microbiology, March 2014, Vol. 22, No. 3
Common fungal infections in HIV and their global
impact
Since the first cases of AIDS were identified in San Fran-
cisco and New York in the early 1980s, opportunistic fungal
infections have been a primary driver for mortality from
HIV infection. Although Pneumocystis pneumonia (PCP)
was initially responsible for over 70% of the first 400
recorded deaths from HIV/AIDS, cryptococcal meningitis
(CM) now accounts for the majority of worldwide deaths
from HIV-related fungal infection (Table 1) [4,5]. Further-
more, the ongoing HIV pandemic has led to the emergence
of further opportunistic infections in the context of endemic
mycoses.

Cryptococcosis

CM is a devastating infection associated with a high case
fatality rate, primarily associated with advanced HIV dis-
ease (typically a CD4 T cell count < 100 cells/mm3) [5,6]
and caused by the basidiomycete Cryptococcus neoformans.
Infection is acquired by inhalation, and a failure to control
latent infection in alveolar macrophages as a consequence
of HIV infection leads to systemic dissemination with
death from meningoencephalitis and raised intracranial
pressure [5]. The majority of HIV-related CM occurs in sub-
Saharan Africa; an epidemiological study published in
2009 suggested that there are 720 000 cases per annum
in this region, and approximately 950 000 cases globally
per annum [5]. There are an estimated 120 000 cases per
annum in South and Southeast Asia, 7800 cases in North
America, 6500 cases in North Africa and the Middle East,
500 cases in Western and Central Europe, and 100 cases in
Oceania. As a consequence of these infections, there are
625 000 deaths due to CM globally per annum. Case fatal-
ity rates among treated patients vary widely, from approxi-
mately 9% in developed countries to 70% in sub-Saharan
Africa, reflecting differences in time to diagnosis and ther-
apy used. In addition, cryptococcal immune reconstitution
inflammatory syndrome (IRIS) has emerged as a major
problem and a significant contributor to mortality. We
urgently need better global surveillance to accurately
define the evolving disease burden of CM.

Amphotericin B and flucytosine are the cornerstone of
antifungal therapy for CM. Recent studies have sought to
determine optimal treatment regimens that can be used in
developing countries, where amphotericin B is difficult to
administer owing to its intravenous formulation, toxicity,
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Table 1. Global burden of disease in the HIV–mycoses epidemica

Invasive fungal disease Main epicentres Estimated cases per annum Estimated mortality per annum Refs

Cryptococcal meningitis Sub-Saharan Africa, Southeast Asia 950 000 625 000 [2,3]

Pneumocystis pneumonia Asia, Latin America, sub-Saharan Africa 400 000 150 000 [2,6]

Disseminated histoplasmosis North America, sub-Saharan Africa 300 000 10 000 [17,19]

Disseminated penicilliosis Southeast Asia 50 000 5000 [21]

aThe data presented are based on the best available estimates, with relevant references as indicated. Notably, the data are likely to underestimate the true burden of disease,

because they only represent estimates for the areas indicated, with a substantial number of sporadic cases occurring outside of the epidemic zones.
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and lack of monitoring capacity, and flucytosine is not
widely available. A large Vietnamese randomised con-
trolled trial recently demonstrated a 39% reduction in
10-week mortality with amphotericin B and flucytosine
versus amphotericin B alone for CM [7]. Further studies
indicate that short courses of amphotericin B plus high-
dose fluconazole, or triple combination therapy with short
courses of amphotericin B, flucytosine, and high-dose flu-
conazole, are safe and rapidly sterilising [8]. Further clin-
ical trials to determine regimens with the highest early
fungicidal activity are ongoing.

Pneumocystis pneumonia

Pneumocystis jirovecii is an ascomycete yeast that came to
prominence as the major pulmonary infection associated
with advanced HIV disease during the early 1980s. Infec-
tion is characterised by progressive alveolitis leading to
respiratory failure. Diagnosis of PCP requires radiographic
and microbiological confirmation of disease; thus, the infec-
tion is generally treated empirically in resource-poor set-
tings. This has led to underestimation of the true incidence
of PCP in sub-Saharan Africa, and underscores the urgent
requirement for point-of-care diagnostics to enable early
identification of cases and accurate definition of the global
disease burden [9].

A global meta-analysis of PCP demonstrated a positive
correlation between gross domestic product and likelihood
of PCP, consistent with a relatively lower incidence of PCP
in some African countries, or possibly reflecting ascertain-
ment bias in resource-poor settings [9]. Furthermore, PCP
continues to be a major problem in children with perina-
tally acquired HIV worldwide [10]. Climatic factors are
significant predictors of the likelihood of admission with
HIV-related PCP [11], and PCP can be detected in the air
near PCP-infected individuals. There have been several
documented PCP outbreaks, further suggesting person-to-
person transmission [12].

High-dose cotrimoxazole (trimethoprim–sulfamethoxa-
zole combination therapy) is cheap, oral, and an effective
first-line therapy for PCP. Optimal second-line therapy,
often required owing to cotrimoxazole intolerance, should
be clindamycin plus primaquine [13]. Cotrimoxazole pro-
phylaxis in HIV patients with CD4 T cell counts of
< 200 cells/mm3 has significantly reduced the incidence
of PCP and toxoplasmosis; it is safe to discontinue primary
prophylaxis for PCP when the patient viral load is sup-
pressed and the CD4 count is > 100 cells/mm3 [14].

Clinical and laboratory factors (patient age, hypoxae-
mia, C-reactive protein, injection drug use, presence of
pulmonary Kaposi’s sarcoma, medical comorbidities, and
PCP recurrence) are associated with worse outcomes in
PCP [15]. These risk factors have been used to develop
prognostic scoring tools that enable accurate identification
of patients at higher risk of death, who require intensive
inpatient management [16]. Adoption of such tools, in
combination with point-of-care diagnostics, in resource-
poor settings has the potential to enhance safe manage-
ment of patients with PCP.

Oropharyngeal and oesophageal candidiasis

HIV is primarily associated with oropharyngeal candidia-
sis [17]. Three forms of mucosal candidiasis are common:
pseudomembranous, erythematous, and oesophageal can-
didiasis. Infection prevalence increases greatly with CD4
counts < 200 cells/mm3 [17]. A recent US study suggests a
prevalence of 27% for oropharyngeal candidiasis in newly
diagnosed HIV patients [17]. It has been shown that
oropharyngeal candidiasis has an overall prevalence of
approximately 10% in HIV-1 infected individuals in Asia,
Africa, and Latin America [18]. cART significantly reduces
the risk of oral candidiasis in HIV-1 infection; however,
smoking appears to increase the risk [17]. Judicious use of
topical nystatin or azoles (mainly fluconazole) in combina-
tion with cART has been the mainstay of therapy [17],
although azole resistance may occur.

Endemic and other fungi

Disseminated histoplasmosis was first recognised as an
AIDS-defining infection in 1987, and is present in up to a
quarter of patients with advanced HIV-1 in endemic
regions such as Indiana, USA. This led to the development
of antigen detection assays for urine and blood, with
sensitivity of the urine antigen test greater than 95% in
HIV-positive individuals. The vast majority of cases of
histoplasmosis occur when HIV-positive individuals have
CD4 T cell counts of < 100 cells/mm3 [19]. Fortunately,
response rates to therapy tend to be good, with an 85%
success rate for itraconazole and 98% for amphotericin B
[20]. Secondary prophylaxis is required until CD4 T cell
counts are > 150 cells mm3.

Climactic variables such as rainfall are predictive of
disseminated histoplasmosis, suggesting that some cases
are due to recent exposure rather than reactivation of
latent disease [21]. Histoplasma duboisi has increasingly
been recognised as a disseminated opportunistic mycosis
in the context of advanced HIV infection in Africa. Histo-
plasmosis is estimated to account for approximately 2% of
AIDS presentations in sub-Saharan Africa [22]. A recent
study in Cape Town, South Africa, further demonstrated
that a significant proportion of histoplasmosis-like infec-
tions are due to Emmonsia spp. [23].

Penicilliosis is an endemic infection in Southeast Asia
that is now the third most common AIDS-defining illness in
that region [24]. Bamboo rats are an important natural
121
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host, and human disease occurs primarily during the rainy
season. Most patients with disseminated penicilliosis
present with CD4 counts of < 50 cells/mm3 [25].Common
features include fever, skin lesions, hepatomegaly, lympha-
denopathy, weight loss, and cough. Overall mortality is
approximately 10% in hospital settings, with 75% cure rates
with either itraconazole or amphotericin B [24].

Pulmonary aspergillosis has been a historically common
AIDS-related infection, and occurred mainly secondary to
AZT-related neutropenia or corticosteroid use. However,
sporadic cases may occur in the context of profound HIV-
related immunodeficiency [26]. Chronic pulmonary asper-
gillosis may now be emerging as a complication of lung
damage in HIV–tuberculosis. Given the difficulties in the
diagnosis of pulmonary aspergillosis, development of sim-
ple diagnostic tools will be critical to defining the scale of
this problem.

HIV/AIDS: consequences for antifungal immunity
Although a decline in peripheral blood CD4 count has
historically been a robust predictor of risk for opportunistic
fungal infection in HIV [27], there is now increasing recog-
nition that complex effects of HIV infection in both myeloid
Fungal 
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and lymphocytoid lineages contribute to increased suscept-
ibility to IFIs (Figure 1).

T cell dysfunction in HIV

HIV-1 infection leads to rapid destruction of memory CD4
T cell clones, and ultimately the failure of infection-specific
effector populations [27]. It has been shown that early HIV
infection significantly depletes gut T helper 17 (Th17) cells,
leading to susceptibility to mucosal candidiasis [28], and
mirrors immune deficits observed in chronic mucocuta-
neous candidiasis. Alveolar T cells from HIV-1 infected
individuals also exhibit impaired antigen-specific cytokine
responses for respiratory pathogens [29]. Thus, HIV
appears to facilitate mucosal candidiasis through Th17
cell depletion.

In patients receiving cART, mucosal Th17 numbers are
rapidly restored; however, there is a specific failure to
normalise central and memory CD4 T cells [30]. STAT4-
dependent protective Th1 and Th2 responses in the lung
are also important for immunity to PCP [31], and HIV-
infected individuals colonised with PCP have lower Th2
cytokines than control subjects [31]. Impaired CD4 T cell
responses to cryptococcal mannoprotein are strongly
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associated with a failure to produce interferon-g or tumour
necrosis factor-a (TNF-a) and poor CM outcome. Further-
more, competent responses are associated with reduced
cryptococcal burden in cerebrospinal fluid (CSF), higher
CSF lymphocyte counts, and a faster rate of sterilisation
[6]. Clinical studies have revealed a complex relationship
between cryptococcal genotype, mortality, capsule shed-
ding, and Th1/Th2 host responses [32]. Therefore, it
appears that competent polyfunctional T cell responses
are crucial for optimal sterilising antifungal immunity
in HIV.

The antibody response in HIV

Infection with HIV-1 leads to impaired B cell function, with
a reduction in the proportion of resting memory B cells and
emergence of abnormal B cell populations in blood [33].
These changes correlate with the degree of viraemia and
the CD4 T cell nadir. HIV-dependent T cell activation in
the lymph nodes also leads to impaired B cell development
in germinal centres [34] and an increase in an activated
subset of memory B cells that are sensitive to Fas-
mediated apoptosis [35]. In viraemic or lymphopoenic
HIV-1-infected individuals, Fas expression is extensively
increased on all B cell subsets, and appeared to be asso-
ciated with T cell activation [35]. Notably, there is limited
impact of cART on resting memory B cell depletion [33].

The past decade has witnessed a major resurgence in
interest in antibody-mediated protection against fungal
infection [36]. Studies in CM suggest that capsular anti-
bodies may be able to inhibit yeast budding [37], although
major variation in fungal serotype specificity could com-
plicate further translation. Murine studies further demon-
strate a clear role for B cell B-1 B subpopulations in the
early innate control of C. neoformans infection [38]. In
addition, a critical role has been demonstrated for serum
IgM in the control of cerebral cryptococcosis [39]. A clinical
study demonstrated that PCP-infected patients developed
IgG responses to KEX1 and major surface glycoproteins.
Furthermore, low KEX1 IgG levels were independently
predictive of PCP risk [40]. A class of natural IgM anti-
bodies have been identified in mice and are specific for the
fungal cell wall components chitin and b-glucan [41]. These
antibodies mediate recruitment of dendritic cells (DCs) to
the lung in murine PCP and drive protective adaptive
responses. Furthermore, natural IgM antibodies with simi-
lar specificities are present in fish and primates, suggest-
ing an evolutionarily conserved role in fungal immunity
[41]. These observations support the concept of common
fungal antibody targets that could be exploited for immu-
notherapy [36].

Myeloid function in HIV

Myeloid cells are a major reservoirs of HIV infection [42].
However, the effects of HIV-1 infection on innate antifungal
immunity have been poorly defined. HIV-1 infects macro-
phages at a relative low frequency, leading to expansion of
‘non-classical’ monocytes, downregulation of Toll-like recep-
tor 4 (TLR4) and CD14, impaired NF-kB-dependent cyto-
kine production [43], increased production of IL-10 [43], and
TRAIL (TNF-related apoptosis-inducing ligand) decoy
receptor-mediated apoptosis through intracellular c-FLIP
(cellular FLICE-like inhibitory protein) [44]. Furthermore,
phagocytosis of Aspergillus fumigatus and P. jirovecii is
impaired and mannose receptor expression is reduced
[43]. Zymosan stimulation leads to inhibition of HIV-1
replication in macrophages through IL-10-dependent
mechanisms [45]. Conversely, exposure of HIV-1-infected
DCs to Candida albicans leads to increased HIV-1 replica-
tion and higher levels of IL-10/IL-1b [46].

It has also been shown that HIV-1 has direct and
indirect effects on DC function, leading to dysregulation
of both myeloid and plasmacytoid subsets [47]. This results
in impaired TLR responses and poor antigen presentation
capacity [47]. Furthermore, infection of DCs with Penicil-
lium marneffei promotes endocytosis of HIV-1, leading to
enhanced trans-infection of CD4 T cells by HIV-1 [48].
Clinical studies in HIV cohorts indicate an association
between polymorphisms in the DC trafficking chemokine
receptor CCRL2-167F and rapid progression to PCP, con-
sistent with a role for DC recruitment to the lung for
control of PCP infection [49].

Clinical studies have also demonstrated that capsule
size is a driver for raised intracranial pressure in CM.
Interestingly, increased capsule size was associated with
reduced inflammatory responses in CSF, suggesting an
immunosuppressive effect for cryptococcal capsules within
the macrophage phagolysosome [32]. Taken together, all
these observations suggest that HIV infection leads to
quantitative and qualitative defects in innate antifungal
immunity, and that fungal co-infection modulates the host
immune responses to facilitate heightened HIV replica-
tion.

Treatment options and the way forward
Despite major progress in both translational research and
drug development in the field of medical mycology in recent
years, both the incidence and mortality of invasive fungal
infections in HIV/AIDS remain unacceptably high in devel-
oping countries. Better access to existing therapies, new
therapies with better tolerability and efficacy, point-of-care
diagnostics, enhanced surveillance, improved manage-
ment of immune dysfunction, and effective fungal vaccines
are all required to improve outcomes.

New drugs

There are major pragmatic barriers for the development of
effective antifungal therapy: because fungi are eukaryotic
pathogens, drug development is limited by a lack of fungal-
specific drug targets; the existing lipophilic triazoles, poly-
enes, and echinocandins have poor or no oral bioavailability;
clinical failure is high owing to the immunocompromised
status of the host and the development of resistance for
certain drugs; and toxicity can occur owing to off-target
effects on the host. The development of novel drug classes
is urgently required to improve the unacceptably high mor-
tality (Table 2).

Although cheap and effective treatment options such
as oral fluconazole and itraconazole are readily available
for diseases such as mucosal candidiasis and endemic
mycoses, better oral drugs with satisfactory tolerability
are required, in particular for CM and to a lesser degree for
PCP. At the EMBO AIDS-Related Mycoses Workshop,
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Table 2. A medical mycology toolkit to fight the global AIDS–mycoses epidemic

Tool required Diseases targeted Global impact

Point-of-care diagnostics Pneumocystis pneumonia,

disseminated histoplasmosis,

disseminated penicilliosis

Enhanced diagnosis, early therapy, reduced mortality,

better surveillance

Disposable spinal needles and manometers Cryptococcal meningitis Improved patient management, reduced mortality

New orally active agents Cryptococcal meningitis Improved patient survival, earlier patient discharge,

reduced drug toxicity

Vaccines and immunotherapy Cryptococcal meningitis,

Pneumocystis pneumonia,

histoplasmosis, penicilliosis

Reduced latent infection, enhanced antifungal immunity,

disease prevention, improved outcomes from infection

Improved access to existing medicines Cryptococcal meningitis Improved outcomes from infections, reduced drug toxicity

Global surveillance Cryptococcal meningitis,

Pneumocystis pneumonia,

histoplasmosis, penicilliosis

Increased understanding of global burden, better targeting

of resources, increased insight into risk factors
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access to flucytosine for CM was also identified as a major
issue in developing countries [50]. Given the difficulties
with administration of intravenous amphotericin B, fluco-
nazole is widely used for induction therapy in sub-Saharan
African countries, leading to increased risk of death from
CM [50]. Unfortunately, since the development of the
echinocandins and second-generation triazoles (all prohi-
bitively expensive in developing countries) there has been
a major shortfall in the development of new antifungal
drug classes.

Another critical issue is around the management of
raised intracranial pressure in CM, which is a key cause
of mortality. Large-volume CSF drainage is often repeat-
edly required to normalise intracranial pressure; however,
this requires disposable spinal needles and manometers,
which are not widely available [32]. A key goal would be to
enable global access to these simple medical devices
through well-functioning supply chains (Table 2).

Given the abundance of b-(1,3)-glucan in the cell wall
of Pneumocystis, clinical studies have addressed the
potential utility of echinocandin b-(1,3)-glucan inhibitors
in this infection [51]. However, there are currently no
good randomised controlled trial data to support their
use. Initial studies of echinocandin efficacy in mice and
rats with PCP indicate improved survival with echino-
candin treatment, and it was subsequently shown that
this is due to specific activity against the cyst form of PCP
[52]. Murine studies further support the efficacy of low-
dose caspofungin when combined with cotrimoxazole for
the treatment of PCP [53]. However, echinocandins are
currently very expensive and only available as intrave-
nous formulations, and thus are not suitable for use in
many developing countries. A further target would be to
improve access to safer formulations of amphotericin B
and flucytosine.

Rapid diagnostic tests for fungal infection

Initial studies in South Africa showed that cryptococcal
antigen screening in asymptomatic individuals with HIV
followed by high-dose fluconazole treatment is a cost-effec-
tive strategy for reducing mortality associated with CM
[54]. A new point-of-care dipstick assay has high positive
correlation with validated antigen assays, and allows
screening to be performed on plasma, serum, urine, or
venous blood in resource-poor settings [55].
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There is a strong correlation between blood b-glucan
levels and HIV-related PCP [56]. However, the b-glucan
assay is not specific for PCP, and is expensive and difficult
to use in resource-poor settings. Quantitative PCR for PCP
is highly sensitive and specific for nasopharyngeal aspi-
rates, raising the possibility that minimally invasive air-
way sampling could be a viable diagnostic route in
resource-poor settings [57]. However, a cheap point-of-care
diagnostic that is easy to use is urgently required for PCP.

Rapid diagnosis of histoplasmosis represents a further
logistical problem, because prolonged culture may be
required and the current gold-standard serological assay
(MiraVista Diagnostics, Indianapolis, USA) is not commer-
cially available. Commercial urine-based antigen tests
have recently been developed, approved by the FDA, and
evaluated. Initial studies indicate reasonable sensitivity
and specificity [58]. Likewise, diagnosis of penicilliosis is
primarily reliant on culture-based methods, although
there has been some recent progress with serodiagnostic
and PCR-based methods [59].

Impact of highly active antiretroviral therapy (HAART)

roll-out

cART roll-out in the developed world over the past 15 years
has clearly led to major reductions in the incidence of HIV-
related opportunistic infections such as oropharyngeal
candidiasis, PCP, and CM [60]. It has also been shown
that cART roll-out is associated with reduced incidence of
CM in African settings [61]. These observations provide a
compelling argument for the acceleration of current pro-
grammes to improve access to cART for all. However, given
the issues around increased mortality from cryptococcal
IRIS and early cART, careful screening and identification
of patients with CM will be required.

Cryptococcal IRIS

Cryptococcal IRIS has emerged as a major cause of morbid-
ity and increased risk of death in patients with HIV-
associated CM [62]. Cohort studies indicate that IRIS is
associated with high levels of serum cryptococcal antigen
and pre-IRIS non-Th-1 cytokine profiles in peripheral blood
[62]. Patients with cryptococcal IRIS have increased propor-
tions of CCL2/CXCL10 and CCL3/CXCL10 on CSF CD4/
CD8 T cells and higher ratios of CXCR3+CCR5+CD8+ T cells
compared to patients not developing IRIS, suggesting that



Box 1. Outstanding questions

� What is the true global burden of fungal disease in HIV?

� How is cART roll-out impacting opportunistic fungal infections?

� How many lives can be saved through roll-out of cheap

diagnostics and better drug access?

� How useful will immunotherapy and vaccines be for opportunistic

fungal infections in HIV patients?

� What is the best strategy for treatment and management of

cryptococcal IRIS?

� Is myeloid dysfunction a major driver for susceptibility to

opportunistic fungal infection in HIV?
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CD8+ T cells and myeloid cell trafficking may be involved in
this syndrome [63]. Early cART (within 7 days) is associated
with increased risk of cryptococcal IRIS when compared to
delayed cART (>28 days) [64]. A systematic review sug-
gested that the optimal timing for cART in CM is unclear,
mainly owing to a lack of mortality-based evidence; how-
ever, it is recommended that cART be delayed until there is
clinical evidence of response to antifungal therapy [65].
Current studies of steroid usage in CM may yield a better
understanding of their prophylactic utility for CM IRIS.

It has been historically shown that steroids are a highly
beneficial adjunctive therapy for pulmonary inflammation
and hypoxaemia associated with severe PCP. This sug-
gests that the host response plays a significant role in the
pathogenesis of alveolitis. A recently developed dectin-1
carbohydrate-binding domain fusion to murine FC anti-
body fragment regions has high affinity for PCP b-glucan
and reduced fungal burden in animal models [66]. In a
murine model of PCP IRIS, T cell recovery was associated
with severe pulmonary inflammation and increased pha-
gocytosis by alveolar macrophages [67]. Treatment with
the immunomodulatory drug sulfasalazine lead to
attenuation of IRIS associated with Th2 polarisation in
the lung and alternate activation of macrophages [67].
Depletion of T cells in mice with PCP IRIS using anti-
CD3 antibodies led to striking improvements in survival
and reductions in BAL CD4/CD8 cells [68]. However, HIV-
related PCP IRIS is rare clinically.

Cutaneous IRIS has also been reported as a conse-
quence of P. marneffei infection in Thai HIV-1 patients
on cART initiation [69]. Histoplasma IRIS has also been
reported, associated with a range of manifestations includ-
ing the haemophagocytic syndrome [70].

Immunotherapy and vaccines

There has been considerable interest in augmenting host
Th1 responses to fungal infection. A recent randomised
controlled study of adjunctive recombinant interferon-g
therapy in CM in combination with amphotericin B and
flucytosine demonstrated increased fungicidal activity in
CSF and good tolerability; however, there was no signifi-
cant difference in mortality in this initial study [71].
Studies are now ongoing to evaluate the utility of adjunc-
tive steroid therapy in CM (http://www.controlled-trials.
com/ISRCTN59144167/).

Further studies are evaluating the potential of the 18B7
monoclonal antibody for radioimmunotherapy of CM [72].
A H99 C. neoformans strain expressing interferon-g has
been developed and assessed for its potential as a vaccine
[73]. In BALBc murine infection models, immunisation
with this strain led to enhancement of pulmonary sterilis-
ing responses, associated with enhanced granuloma for-
mation and faster resolution of inflammation in the lung
[73]. Further studies indicate protection was dependent
upon competent Th1-mediated immune responses [73].

However, there are still no vaccines for any fungal patho-
gen that have been developed for clinical use. However,
there are considerable challenges to developing efficacious
vaccines that work in severely immunocompromised hosts,
for whom direct cellular or antibody-mediated therapy is
likely to be required. Further studies in HIV patients with
insufficient immunological reconstitution after cART have
demonstrated the potential of umbilical cord mesenchymal
stem cell therapy to augment competent CD4 T cell
responses [74]. However, deployment of such techniques
in resource-poor settings is not currently feasible.

Concluding remarks
IFIs have emerged as a serious driver of worldwide mor-
tality in the context of the global HIV pandemic. Despite a
major scientific effort to find new cures and vaccines for
HIV, hundreds of thousands of HIV-infected individuals
continue to die on a yearly basis from secondary fungal
infection. We urgently need to better understand the
underlying immunopathogenesis of fungal infection in
HIV to enable better diagnosis and management in at-risk
populations (Box 1). There is also a pressing and pragmatic
requirement for access to effective drugs and other thera-
pies in developing countries. In addition, the development
of novel diagnostics to enable early diagnosis of fungal
infection is required for improved outcomes and better
epidemiological definition of the fungal disease burden
worldwide.
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